Inherited Diseases of Adaptive Immunity

Jennifer Puck, MD puckj@peds.ucsf.edu

Department of Pediatrics and Institute for Human Genetics

University of California San Francisco
and
Benioff Children’s Hospital

San Francisco, California
Faculty Disclosures

Jennifer Puck, MD

For the 12 months preceding this CME activity, I disclose the following types of financial relationships:

Honoraria received from:
• Biofusion Inc., Children’s Hospital of Los Angeles, Kaiser Permanente

Consulted for:
• None

Held common stock in:
• None

Research, clinical trial, or drug study funds received from:
• Baxter

I will not be discussing products that are investigational or not labeled for use under discussion.
Causes of Impaired Host Defenses, from Common to Rare, Worldwide

- Environmental
 - Malnutrition
 - Chronic infections: HIV, TB
 - Secondary to drug treatments for cancer, etc

- Genetic
 - Known and unknown factors:
 - Inability to clear invading organisms
 - from respiratory tract (cystic fibrosis)
 - from circulation (sickle cell disease)
 - Defects in immune system genes
 - Primary immunodeficiency disorders
What Are the Barriers to Early Primary Immunodeficiency Diagnosis?

- Immune defects are rare.
- Infections are common in all infants, not just those with immunodeficiency.
- Family history is most often missed, subtle or absent.
- Infants are protected by maternal IgG for their first months of life.
- Both a gene defect and environmental exposure required for overt disease, so presentation is variable.
Initial Clinical Presentation

• Well and thriving before age 2 1/2, only a few ear infections.
• Recurrent fevers to 39°C (104°F).
• Right lower lobe pneumonia treated with amoxicillin.
• Erythema multiforme rash following amoxicillin.
• Enlarged spleen and liver noted.
Laboratory Studies

- Normal bone marrow--no malignancy
- Low IgG 98 (normal for age 892 ± 183)
- Absent IgA (normal 71 ± 37)
- Normal IgM 78 (61 ± 19)
- Anti-tetanus antibody undetectable, despite vaccines
- T, B, NK cells present in normal numbers

Diagnosis: Common variable immunodeficiency (CVID)
Treatment and Course

- Intravenous immunoglobulin (IVIG) every 4 weeks
- No penicillin or related antibiotics

- 2 years later, age 4… Growing, feeling well
 CT scan to follow
 enlarged liver & spleen: pulmonary nodules
 Bronchoscopy negative for bacteria, fungi and mycobacteria. No granulomas.
Common Variable Immunodeficiency (CVID)

- Not a single disease. 2 onset peaks, 1-5 & 16-20 years.
- Presentation: sinusitis, pneumonia, bronchiectasis, GI infections, adenopathy/splenomegaly, autoimmunity.
- Delay in diagnosis (average 8 years!!!).
- Required lab findings: At least two Ig isotypes low (no IgA in >50%; poor specific antibody responses to challenge.
- Other features: other infections, fatigue, arthritis, anemia, inflammatory bowel disease, cancer (lymphoma).
- Underlying cause mostly unknown; 20% have relatives with CVID, absent IgA, autoimmunity. Mutations in ICOS, TACI, BAFF-R, CD19 account for 5-10%.
- Treatment: give IgG; treat infections aggressively & consider prophylactic antibiotics; watch for complications.
Severe Combined Immunodeficiency--SCID

- Most severe primary immune disorder; no adaptive immunity.
- Recurrent infections and weight loss from age 2-4 months.
- Serious bacterial, viral, & fungal infections; attenuated or opportunistic organisms that do not cause disease in healthy infants.
- Early death unless the patient is given a working immune system.
- Incidence unknown, estimated of 1/50,000 – 1/100,000 births.
- Very low or absent T cells with impaired function; no specific antibodies even if B cells present. NK cells may be present or absent, depending on genotype and other factors.
Thrush (Candida oral infection) in Severe Combined Immunodeficiency--SCID
Later Diagnosis, Variant SCID or CID

Severe varicella: pneumonia and hemorrhagic blisters.
1950’s: “Swiss type agammaglobulinemia” (Walter Hitzig) and distinct roles of T and B cells (Robert Good).

1968: first successful human transplant. Recipient had SCID, donor was his healthy, HLA-identical sister.

1970’s - 2000’s: Transplant breakthroughs: hematopoietic cell transplant (HCT) beyond HLA-matched sibling—parent (haploidentical T cell depleted) or unrelated HLA matched adult or cord blood.

1990’s: Enzyme replacement with PEG-ADA for Adenosine deaminase deficient SCID.

2000’s: Gene therapy: X-linked and ADA SCID treatment by adding a correct copy of the IL2RG or ADA gene to autologous ex vivo; then re-infusing back into patient.
Known Typical SCID Defects

- Prevention of cell apoptosis
 - DNA replication
 - ADA (11%)

- γc cytokine-dependent signals
 - γc, JAK-3, IL7Ra (53%)

- Pre-TCR/TCR signalling
 - CD45, CD3δ, ε (2%)

- V(D)J recombination
 - Rag-1/-2, Artemis (30%)

Myeloid compartment

HSC → CLP → THYMUS → CD8, CD4 → B (NK)
RAG1/2, CD45, TCRα/β, LIG4, LCK, STAT5b, FOXN1, Coronin-1A, Reticular Dysgenesis, SCID & GI atresias

2012
17
SCID Genes

X-linked SCID
IL2RG
γc
unknown
Artemis
IL7Rα
JAK3
ADA
X-Linked Inheritance of SCID
Most SCID Is Sporadic

Baby boy, twin, in NICU had *E. coli* sepsis, pneumonia, then disseminated CMV.
Low lymphocyte count not recognized as SCID.
Died at 3.5 months, diagnosis of SCID made after death.
<20% of SCID Cases Diagnosed at Birth Because of an Affected Relative

Subsequent brother had SCID diagnosed at birth by absent T and B lymphocytes. Received early bone marrow transplant from HLA matched sister and is now healthy.
Justifications for Newborn Screening

<table>
<thead>
<tr>
<th>Screening Criteria</th>
<th>How SCID Meets the Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease is serious</td>
<td>Fatal in first year of life if untreated</td>
</tr>
<tr>
<td>Disease is not detected by exam</td>
<td>Newborns with SCID appear healthy</td>
</tr>
<tr>
<td>Incidence supports screening</td>
<td>Estimated 1/50,000-100,000; 1/2,000 in Navajo; ~8-12/year in California</td>
</tr>
<tr>
<td>Incidence supports screening</td>
<td>Estimated 1/50,000-100,000; 1/2,000 in Navajo; ~8-12/year in California</td>
</tr>
<tr>
<td>Well-established confirmative testing</td>
<td>Lymphocyte subsets by flow cytometry</td>
</tr>
<tr>
<td>Effective treatment exists</td>
<td>Transplant allogeneic blood-forming cells, enzyme/gene therapy</td>
</tr>
<tr>
<td>Earlier treatment is better</td>
<td>Best survival and outcomes when treated before infections occur</td>
</tr>
<tr>
<td>Diagnosis & treatment are available</td>
<td>Specialized transplant centers, PIDTC Rare Disease Network</td>
</tr>
<tr>
<td>Screening is cost-effective</td>
<td>TREC test. WI, MA, CA, NY, LA, CO, CT, MI (others planning to start)</td>
</tr>
</tbody>
</table>
SCID Is Treatable
SCID Patients Treated Early Have Better Survival

Duke University’s largest single institution series of SCID transplants (Dr. R. Buckley); survival for patients treated when older vs. younger than 3.5 months.

Years Post-Transplantation

- 66% for patients treated when older than 3.5 months of age
- 96% for patients treated when younger than 3.5 months of age
205 IL2RG Mutations in 351 Unrelated Families with XSCID (62% Puck lab)

IL2RG Domain
- signal sequence
- conserved cysteine
- WSXWS box
- transmembrane
- box1-box2 domain
- 3’ untranslated

Mutation Type
- nonsense
- insertion, frame shift
- deletion, frame shift
- no translation
- splice
- poly-A addition site
- large deletion
- missense
- insertion, in frame
- deletion, in frame
- complex
- polymorphism
T Cell Receptor Excision Circles (TRECs)
TREC Assay on Dried Blood Spots

- Guthrie Card
 - 50 ul blood/drop
 - 3 mm hole punched from blood spot
 - ~3 ul blood

Extract DNA

Measure TREC by PCR

Standard Curve Plot

Detector: Trec-Tamra

Legend:
- Standards
- Unknowns

Trec-Tamra

Standard Curve

Slope: 3.647846
Y-Inter: 41.54031
R2: 0.9989959
TRECs in Stored Residual Blood Spots from SCID Newborns
DHHS Secretary’s Advisory Committee 2010: Public Health Interest Favors Identifying Infants with Low TRECs.

1. Assure that infants with low TREC are evaluated by an expert and treated without delay.

2. Avoid potential harm from an otherwise beneficial public health program, live attenuated rotavirus vaccination.

3. Track outcomes to measure effectiveness of screening, diagnosis and management.

First programs 2008, 2009: Wisconsin, Massachusetts, Navajo

January, 2010: Committee unanimously recommends adding SCID to uniform newborn screening panel.

May, 2010: Sec. of Health Kathleen Sibelius endorses SCID screening.

August, 2010: CA TREC screening begins. NY, LA, CO, CT, MI, Navajo Nation follow.
CALIFORNIA SCID NEWBORN SCREENING
TREC Test and Follow Up [Puck, Church and Lorey, 1/2012]

Initial TREC Assay
- **TRECs >40**
 - Normal
 - Repeat TREC with Actin
- **TRECs ≤40**
 - Repeat TREC with Actin
 - **TRECs ≤5**
 - Actin >5,000
 - Actin ≤5,000
 - DNA Amplification Failure
 - Regular
 - NICU
 - Incomplete
 - **TRECs 6-25**
 - Actin >10,000
 - Actin ≤10,000
 - DNA Amplification Failure
 - Regular
 - NICU
 - Incomplete
 - **TRECs >25**
 - Normal
 - DNA Amplification Failure, Incomplete
 - Repeat Heel Stick
 - Repeat Heel Stick
 - **TRECs ≤25**
 - DNA Amplification Failure, Incomplete #2
 - DNA Amplification Failure
 - Positive
 - **TRECs >25**
 - Normal
 - Normal
 - Abnormal
 - CBC & diff Lymphocyte subsets at Quest Lab interpreted by CDPH Immunology Consultant
 - Refer to Primary Immune Deficiency Center

TREC and Actin copies per uL of blood, assuming each 1/8” punch of dried blood filter represents 3 uL of blood.
THIS MAY ALL SEEM VERY CONFUSING, BUT NEWBORNS WITH SCID HAVE HAD 0-5 TRECS!
California TREC Screening Results, First Year

- 500,000 TREC Screens
- 30 (60%) normal after flow cytometry
- 0.01% (n=50) Positive or DNA Amplification Failure
- 20 abnormal: 1 in 25,000 births
 - 6 Typical SCID
 - 1 Leaky SCID, Omenn syndrome
 - 3 Variant SCID
 - 4 Syndromes with low T cells
 - 6 Secondary T lymphopenia
Typical and Leaky SCID/Omenn

- **6 Typical SCID:** <300 autologous T cells/uL (may have maternal cells), PHA proliferation <10% of control. Normal newborns have 2500-5500 T cells/uL.

 No recurrent gene or mutation, all but one with at least 1 Hispanic parent
 2 IL-7 receptor alpha chain
 2 RAG1
 2 X-linked, IL-2 receptor gamma (1 familial, 1 new)

- **1 Omenn syndrome:** 300-1500 T cells/uL, no maternal cells, PHA proliferation 10-30% of control.
 (Erythroderma, eosinophilia, oligoclonal T cells, hypomorphic mutation in known SCID gene)
 RAG2
Syndromes with Variable T Cell Defects That Can Be Severe

• 1 Complete DiGeorge syndrome with thymic aplasia (ch22q11.2 deletion): Diagnose by copy number array, CGH
• 2 Partial DiGeorge syndrome with low T cells
• 1 Trisomy 21
 CHARGE syndrome
 Cartilage hair hypoplasia
 Jacobsen syndrome
 RAC2 dominant interfering mutation
 DOCK8 deficient hyper-IgE syndrome
 Others…
Secondary T Lymphopenia

- 2 Gastroschesis
- 1 Gastrointestinal atresia
- 3 Extreme prematurity

 Congenital heart disease surgery with thymectomy

 Neonatal leukemia

 Vascular leakage, chylothorax, third spacing

 Prenatal HIV infection
Variant SCID

• 300 – 1,500 autologous T cells/uL (normal 2500-5500/uL). [Typical SCID can have >300 T cells if maternal engraftment is present.]

• No known SCID gene mutation.

• Impairment in T cell and/or antibody responses.
Conclusions

1. Primary immune disorders are caused by a wide range of rare, but treatable gene defects. Secondary immune disorders confer a risk of serious infections.

2. Early diagnosis permits optimal treatment and better outcome.

3. Newborn screening has clinical validity, having made possible pre-symptomatic diagnosis of SCID and related conditions, and offers opportunities for learning spectrum of T cell disorders and arriving at best treatments.

4. High index of suspicion is still needed for conditions not picked up by screening.
Thanks to Many Collaborators

<table>
<thead>
<tr>
<th>California Dept. of Pub Health</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred Lorey and colleagues</td>
<td>NIH</td>
</tr>
<tr>
<td>PerkinElmer</td>
<td>NCRR UCSF CTSI</td>
</tr>
<tr>
<td>Quest Nichols Lab</td>
<td>NIAID USIDNet and RO3</td>
</tr>
<tr>
<td>Mort Cowan, Christopher Dvorak</td>
<td>NIAID Primary Immune</td>
</tr>
<tr>
<td>Diana Gonzalez, Laurence Cheng, Katherine Gundling, Alice Chan</td>
<td>Deficiency Treatment Consortium (PIDTC)</td>
</tr>
<tr>
<td>UCLA/Stanford</td>
<td>Jeffrey Modell Foundation</td>
</tr>
<tr>
<td>Sean McGhee</td>
<td>Immune Deficiency Foundation</td>
</tr>
<tr>
<td>LA Children’s Hospital</td>
<td>And special thanks to the patients and their families who encourage and teach us</td>
</tr>
<tr>
<td>Joseph Church</td>
<td></td>
</tr>
</tbody>
</table>