Asthma Phenotypes: Implications for Targeted Treatment Choices

Monica Kraft, M.D.
Robert and Irene Flinn Professor of Medicine
Chair, Department of Medicine
Deputy Director, Asthma and Airway Diseases Research Center
University of Arizona Health Sciences Center
Tucson, Arizona
Disclosures

Research (funds paid to U of A):
NIH, Sanofi, Chiesi

Consulting: Astra Zeneca, Sanofi

Royalties: Elsevier
Definition of Severe Asthma > age 6

(ATS/ERS Guidelines; ERJ 2014;43:343)

Asthma which requires treatment with guidelines suggested medications for GINA steps 4–5 asthma (high dose ICS and LABA or leukotriene modifier/theophylline) for the previous year or systemic CS for > 50% of the previous year to prevent it from becoming “uncontrolled” or which remains “uncontrolled” despite this therapy.
Stepwise Approach for Managing Asthma in Patients ≥ 12 Years of Age

STEP 1
- PREFERRED
- Low-dose ICS
- SABA PRN

STEP 2
- PREFERRED
- Low-dose ICS
- Cromolyn, Nedocromil, LTRA, or Theophylline

STEP 3
- PREFERRED
- Medium-dose ICS + LABA
- Alternative
- Low-dose ICS + either LTRA, Theophylline, or Xileuton

STEP 4
- PREFERRED
- Medium-dose ICS + LABA
- Alternative
- Medium-dose ICS + either LTRA, Theophylline, or Xileuton

STEP 5
- PREFERRED
- High-dose ICS + LABA
- AND
- Consider Omalizumab for patients who have allergies

STEP 6
- PREFERRED
- High-dose ICS + LABA + oral corticosteroid
- AND
- Consider Omalizumab for patients who have allergies

Quick-Relief Medication for All Patients:
- SABA as needed for symptoms. Intensity of treatment depends on severity of symptoms: up to 3 treatments at 20-minute intervals as needed. Short course of systemic oral corticosteroids may be needed.
- Caution: Increasing of beta-agonist or use >2x/week for symptom control indicates inadequate control and the need to step up treatment.

The GINA Report Has A More Updated Treatment Approach for Adults, Adolescents & Children (ages 6-11)

PREFERRED CONTROLLER CHOICE

- **STEP 1**
 - Consider low-dose ICS

- **STEP 2**
 - Leukotriene receptor antagonists (LTRA)
 - Low-dose theophylline*

- **STEP 3**
 - Low-dose ICS/LABA**
 - Med/high-dose ICS/LABA

- **STEP 4**
 - Med/high-dose ICS
 - Low-dose ICS+LTRA (or + theoph*)
 - Add tiotropium**
 - Add low-dose OCS

- **STEP 5**
 - Refer for add-on treatment e.g. tiotropium,** anti-IgE, anti-IL5*

RELIEVER

- As-needed short-acting beta₂-agonist (SABA)

- As-needed SABA or low dose ICS/formoterol#

Not for children <12 years
For children 6-11 years, the preferred Step 3 treatment is medium dose ICS
#For patients prescribed BDP/formoterol or BUD/ formoterol maintenance and reliever therapy
† Tiotropium by mist inhaler is an add-on treatment for patients ≥12 years with a history of exacerbations
Evaluation

<table>
<thead>
<tr>
<th>Question</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is this asthma?</td>
<td>Confirm Asthma Diagnosis</td>
</tr>
<tr>
<td></td>
<td>History/Physical</td>
</tr>
<tr>
<td></td>
<td>Spirometry with reversibility and chest x-ray</td>
</tr>
<tr>
<td></td>
<td>Address medication adherence, technique</td>
</tr>
<tr>
<td>What is contributing to the asthma?</td>
<td>Further Evaluate Suspected Severe Asthma</td>
</tr>
<tr>
<td></td>
<td>Assess and manage comorbidities</td>
</tr>
<tr>
<td></td>
<td>Atopy, Allergic Bronchopulmonary aspergillosis,</td>
</tr>
<tr>
<td></td>
<td>chronic sinusitis, chronic obstructive pulmonary disease, gastro-esophageal reflux disease, vocal</td>
</tr>
<tr>
<td></td>
<td>cord dysfunction, obstructive sleep apnea, obesity, depression</td>
</tr>
<tr>
<td>Is this severe asthma?</td>
<td>Confirm Severe Asthma</td>
</tr>
<tr>
<td></td>
<td>Plethysmography, DLCO</td>
</tr>
<tr>
<td></td>
<td>Methacholine challenge, FeNO if available</td>
</tr>
<tr>
<td></td>
<td>Biomarkers: Blood eosinophils, IgE</td>
</tr>
<tr>
<td></td>
<td>Imaging: High resolution CT scan of lungs</td>
</tr>
<tr>
<td></td>
<td>Treatment options beyond guidelines</td>
</tr>
<tr>
<td>What would a referral center add?</td>
<td>Additional workup for phenotyping, comorbidities</td>
</tr>
<tr>
<td></td>
<td>Additional Therapeutics</td>
</tr>
<tr>
<td></td>
<td>Small particle devices</td>
</tr>
<tr>
<td></td>
<td>Novel investigational interventions</td>
</tr>
</tbody>
</table>
Key Concepts

- Asthma is a syndrome with many nonspecific features
- Thorough history, physiologic and radiographic assessment to confirm diagnosis
- Once confirmed, the severity and control, in addition to the asthma phenotype is determined.
What is Asthma?

- Early onset
- Late onset

Symptoms

Exacerbations

FEV1

TH2 inflammation
- Eosinophilic
- Non-eosinophilic

Phenotype A
Phenotype B
Phenotype C
Phenotype D

Understanding Disease Mechanisms May Guide Therapy to a More Personalized Approach

One Size Fits All Stratified Medicine Personalized Medicine

- Evidence-based
 - One treatment for all

- Evidence-based
 - Different treatments for groups of patients

- Evidence-based
 - Individualized treatment for each patient

Asthma Phenotypes

- **Phenotype**: observable properties of an organism that are produced by the interactions of the genotype and the environment.

- Asthma phenotypes are based on clinical characteristics, triggers or general inflammatory processes have been proposed and do not always suggest an underlying mechanism.

- **Endotype**: a specific biological pathway is identified that explains the observable properties of a phenotype.
Th2/T2 asthma

- T2/Th2-associated asthma linked to:
 - atopy and allergy
 - type I hypersensitivity reactions
 - eosinophilic inflammation and response to corticosteroids

- Early-onset (preadolescence) mostly atopic and allergic asthma phenotype
 - Strong family history of atopic disease
 - Overlap with other co-morbid atopic conditions: allergic rhinitis and atopic dermatitis
 - Early-onset allergic asthma can present with mild to severe disease; unclear whether mild allergic asthma progresses to severe disease or whether severe allergic asthma arises in childhood and remains severe
 - Can be exacerbated by obesity
Th2/T2 Asthma

- Later-onset (often age 20 or later) eosinophilic phenotype
 - Approx 50% asthma associated with high EOS (>2% in sputum; no consistent serum value)
 - In severe asthma, high numbers of eosinophils can persist despite treatment with inhaled and oral corticosteroids and appear to be consistent over at least 5 yrs
 - Tends not to be allergic, related to family history
 - Usually severe from the outset
 - Can be related to sinus disease, polyp formation and aspirin sensitivity…AERD
 - Exacerbated/associated by obesity
Non-T2/Th2 asthma/non-eosinophilic

- Non-T2/Th2 asthma is likely to represent a large proportion of all asthma (up to 50% OCS-naïve pts) but little is understood about pheno/endotypes
- Responds poorly to corticosteroid therapy
- Linkage to obesity (esp in age>40)
- “Neutrophilic” asthma: may be driven by OCS use; associated with lower lung function, more air trapping, thicker airway walls
- Associations also present with infections, and environmental exposures (ozone, pollutants)
Overview of Asthma Phenotypes

Adapted from Wenzel S. Nature Medicine 18, 716–725 (2012)
Multiple Endotypes Drive Asthma Phenotypes

TABLE I. Proposed relationship between asthma phenotypes and endotypes: asthma phenotypes can be present in more than 1 endotype, and endotypes can contain more than 1 phenotype

| Phenotype: | Eosinophilic asthma |
| Endotypes: | allergic asthma (adult),* aspirin-sensitive asthma, severe late-onset hypereosinophilic asthma,* ABPM* |

| Phenotype: | Exacerbation-prone asthma |
| Endotypes: | allergic asthma (adult),* aspirin-sensitive asthma,* late-onset hypereosinophilic asthma, API-positive preschool wheezer,* ABPM,* viral-exacerbated asthma, premenstrual asthma |

| Phenotype: | Obesity-related asthma |
| Endotypes: | airflow obstruction caused by obesity, severe steroid-dependent asthma, severe late-onset hypereosinophilic asthma* |

| Phenotype: | Exercise-induced asthma |
| Endotypes: | cross-country skiers’ asthma, other forms of elite-athlete asthma, allergic asthma, API-positive preschool wheezer* |

| Phenotype: | Adult-onset asthma |
| Endotypes: | aspirin-sensitive asthma,* infection-induced asthma, severe late-onset hypereosinophilic asthma* |

| Phenotype: | Fixed airflow limitation |
| Endotypes: | noneosinophilic (neutrophilic) asthma |

| Phenotype: | Poorly steroid-responsive asthma |
| Endotypes: | noneosinophilic (neutrophilic) asthma, steroid-insensitive eosinophilic asthma, airflow obstruction caused by obesity |

Biomarkers to identify the Th2 phenotype

- Sputum eosinophils
- Exhaled nitric oxide
- Circulating eosinophils
- IgE
- Allergen skin testing
- Eosinophil Peroxidase – in development
- Urinary bromotyrosine – in development
Mechanisms of Eosinophilic/T2 Asthma

EPX is increased in eosinophilic asthma and correlates with sputum eosinophils

Rank et al. Allergy 2016;7:567
Is asthma uncontrolled, despite stepping up to a high-dose ICS + LABA?

- Poor symptom control (ACQ > 1.5, ACT < 20, or per GINA/NAEPP guidelines)
- ≥2 bursts of systemic corticosteroids for asthma exacerbations in the past year
- ≥1 hospitalization for asthma in the past year
- FEV₁ < 80% predicted when not taking short- or long-acting bronchodilators
- Asthma is uncontrolled when any 1 of the 4 criteria above is present

Close follow-up. Reduce treatment intensity after at least 3-6 months of stable, good control, per GINA/NAEPP guidelines.

Consider adding a non-biologic therapy
- Tiotropium
- Leukotriene modifier
- Theophylline
- Macrolide antibiotic
- Oral glucocorticoid (short course)

is asthma still uncontrolled, despite treatment with high-dose ICS + LABA and a non-biologic add-on therapy?

Refer patient to an asthma specialist

Determine inflammatory phenotype/Endotype
- Start with non-invasive testing (allergy testing, IgE level, blood eosinophil count and FENO level)
- If poor response to therapy continues, consider induced sputum differential for eosinophil and neutrophil counts and/ or bronchoscopy with endobronchial biopsy and BAL
Treatments approved or under development

Adapted from Muraro et al. JACI 2016 137, 1347-1358
How Does Omalizumab Compare With New Biologics In Similar Patients?

Effect of omalizumab based on Th2 biomarkers

- FeNO
 - <19.5 ppb
 - ≥19.5 ppb
- Eosinophils
 - <260/µL
 - ≥260/µL
- Periostin
 - <50 ng/mL
 - ≥50 ng/mL

Reduction in protocol-defined Asthma exacerbation rate (Mean %, 95% CI)

- FeNO
 - n = 193
 - P = 0.45*
 - n = 201
 - P = 0.001*
- Eosinophils
 - n = 383
 - P = 0.54*
 - n = 414
 - P = 0.005*
- Periostin
 - n = 279
 - P = 0.94*
 - n = 255
 - P = 0.07*

*Exacerbation reduction P-values; omalizumab versus placebo in each biomarker subgroup.

Anti-IL-5/IL-5R Biologics

- Efficacy data most compelling if peripheral eos > 300/µl with improved lung function and decreased exacerbations
- Can consider if peripheral eos > 150/µl
- Consider if eos elevated and atopy not as clinically significant but can be a challenging decision
- Consider if patient requiring oral steroids yet demonstrates peripheral eosinophils, especially if > 300/µl
The DREAM Study
Dose-Ranging Efficacy of Mepolizumab in Reducing Exacerbation

Mepolizumab: *NEJM* 2014

Asthma exacerbations

<table>
<thead>
<tr>
<th>Cumulative no.</th>
<th>Placebo</th>
<th>Mepolizumab 75 IV</th>
<th>Mepolizumab 100 SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0-32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change from baseline in glucocorticoid

<table>
<thead>
<tr>
<th>Median change (%)</th>
<th>Placebo (n = 66)</th>
<th>Mepolizumab (N = 69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0-24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FEV$_1$

<table>
<thead>
<tr>
<th>FEV$_1$ (% of predicted value)</th>
<th>Placebo</th>
<th>Mepolizumab 75 IV</th>
<th>Mepolizumab 100 SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0-32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asthma exacerbations

<table>
<thead>
<tr>
<th>Cumulative no.</th>
<th>Placebo</th>
<th>Mepolizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0-24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV = intravenous; SC = subcutaneous.
Reslizumab—Effects on Exacerbations and Lung Function

Placebo; n = 244
Reslizumab 3.0 mg/kg; n = 245
HR = 0.575 (95% CI 0.440–0.750)
P<0.0001

CAE = clinical asthma exacerbation; HR = hazard ratio; LS = least square (mean).

Benralizumab Reduced Frequency of Asthma Exacerbations (Primary Endpoint)

Annual asthma exacerbation rate estimates at 48 weeks according to baseline blood eosinophil concentrations

Eosinophil ≥300 cells per µL

- Placebo (n=267)
- Benralizumab 30 mg Q4W (n=275)
- Benralizumab 30 mg Q8W (n=267)

Percentage reduction relative to placebo

- 45%
- 51%

Annual asthma exacerbation rate ratio (95% CI)

- 1.12-1.58
- 0.60-0.89
- 0.53-0.80

P < 0.0001

Eosinophil <300 cells per µL

- Placebo (n=140)
- Benralizumab 30 mg Q4W (n=124)
- Benralizumab 30 mg Q8W (n=131)

Percentage reduction relative to placebo

- 30%
- 17%

Annual asthma exacerbation rate ratio (95% CI)

- 0.96-1.52
- 0.65-1.11
- 0.78-1.28

P = 0.047

P = 0.0269

Benralizumab Reduced Time to Asthma Exacerbation

- Benralizu-mab administered every 4 weeks was associated with a longer time to the first exacerbation than placebo (HR, 0.39; 95% CI, 0.22 to 0.66; \(P<0.001\))
- Benralizumab administered every 8 weeks was also associated with a longer time to the first exacerbation than placebo (HR, 0.32; 95% CI, 0.17 to 0.57; \(P<0.001\))

Benralizumab Reduced Oral Glucocorticoid Dose in Severe Asthma (Primary Endpoint)

- 75% median reduction from baseline in the final oral glucocorticoid dose in patients who received Either of the benralizumab regimens, vs 25% in the patients who received placebo ($P<0.001$ for both comparisons)
Dupilumab Phase III data

Dupilumab is Corticosteroid Sparing

2019: Non-T2 options (not only T2)
Peripheral eos < 150/µl
FeNO < 19 ppb
Sputum eos < 2%

- Tiotropium
- Macrolides
- Bronchial thermoplasty
Treatments under development – Non T2

- Neutrophilic inflammation
- Paucigranulocytic inflammation
- Airway hyperreactivity and remodeling

- imatinib

- ILC1/3?
- Epithelium
- Neutrophil
- Th1
- Th17

- Macrolides
 - proteases
 - ROS
 - IL-1
 - IL-6

- Bacterial products
 - IFN-γ
 - TNF-α

- IL-8
- IL-23

- Bronchial Thermoplasty

- IL-17
 - IL-18
 - IL-22
 - IL-23
 - CXCR2

Adapted from Muraro et al. JACI 2016 137, 1347-1358
Tezepelumab Reduces Severe Asthma Exacerbations Independent of Blood Eosinophil Count

FeNo = Fractionated nitric oxide; Ppb = Parts per billion.
Blood Eosinophils

Fevipiprant in Eosinophilic Asthma

- Significantly reduced eosinophilic inflammation in the sputum and bronchial submucosa in patients with persistent moderate to severe asthma and sputum eosinophilia
- Significantly improved AQLQ(S) scores, postbronchodilator FEV₁, and functional residual capacity in all patients, and ACQ-7 scores in the predefined subgroup of patients who had uncontrolled asthma at baseline
- Favorable safety profile, with no deaths or serious AEs reported; no withdrawals related to the study drug

Our Approach to Asthma is Changing

- Our understanding of the biology of asthma heterogeneity has improved dramatically.
- The use of clinical characteristics, biomarkers and response to treatment will further hone our ability to deliver personalized/precision therapy.
- We need readily available point-of-care biomarkers to make real time decisions regarding therapies for our patients.